An isoperimetric inequality for a nonlinear eigenvalue problem
نویسندگان
چکیده
منابع مشابه
An isoperimetric inequality for a nonlinear eigenvalue problem
We present an isoperimetric inequality for a nonlinear generalization of the first twisted Dirichlet eigenvalue. Let λ(Ω) be the set functional defined by λ(Ω) = inf { ‖∇v‖Lp(Ω) ‖v‖Lq(Ω) , v ∈W }
متن کاملIsoperimetric Inequalities for a Nonlinear Eigenvalue Problem
An estimate for the spectrum of the two-dimensional eigenvalue problem Am + Xe" = 0 in D (X > 0), u = 0 on 3 D is derived, and upper and lower pointwise bounds for the solutions are constructed. 1. Let D be a simply connected bounded domain in the plane with a piecewise analytic boundary 3D. Consider the nonlinear Dirichlet problem Am(x) + Xe"w = 0 in D, (1) u(x) = 0 on dD, where X is a positiv...
متن کاملA Variational Approach to the Isoperimetric Inequality for the Robin Eigenvalue Problem
The isoperimetric inequality for the first eigenvalue of the Laplace operator with Robin boundary conditions was recently proved by Daners in the context of Lipschitz sets. This paper introduces a new approach to the isoperimetric inequality, based on the theory of special functions of bounded variation (SBV). We extend the notion of the first eigenvalue λ1 for general domains with finite volum...
متن کاملAn isoperimetric inequality related to a Bernoulli problem
Given a bounded domain Ω we look at the minimal parameter Λ(Ω) for which a Bernoulli free boundary value problem for the p-Laplacian has a solution minimising an energy functional. We show that amongst all domains of equal volume Λ(Ω) is minimal for the ball. Moreover, we show that the inequality is sharp with essentially only the ball minimising Λ(Ω). This resolves a problem related to a quest...
متن کاملA Nonlinear Eigenvalue Problem
My lectures at the Minicorsi di Analisi Matematica at Padova in June 2000 are written up in these notes1. They are an updated and extended version of my lectures [37] at Jyväskylä in October 1994. In particular, an account of the exciting recent development of the asymptotic case is included, which is called the ∞-eigenvalue problem. I wish to thank the University of Padova for financial suppor...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Annales de l'Institut Henri Poincaré C, Analyse non linéaire
سال: 2012
ISSN: 0294-1449
DOI: 10.1016/j.anihpc.2011.08.001